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Introduction

Genome-scale metabolic network model (GEM) has 
become an essential tool for systems-level understanding of 
metabolism and its applications in metabolic engineering. 
GEM is reconstructed through the extensive collection and 
curation of the biological information on gene annotation 
and functions, metabolites, metabolic reactions, enzymes 
and their interactions within a given organism. It is the 
most comprehensive and a standardized representation of 
our knowledge on metabolic signature of microorganisms. 
Currently, more than 100 GEMs are available and the num-
ber of organisms with reconstructed GEMs is rapidly grow-
ing due to the advances in both high-throughput technolo-
gies and the tools for automatic data collection and draft 
network reconstruction [32, 87].

Computational algorithms such as constraint-based flux 
balance analysis (FBA) are essential to systematically ana-
lyze reconstructed GEMs and have been used to under-
stand the objectives and functions of metabolic network 
and (adaptive) evolutionary process [17, 36, 40, 70]. Con-
straint-based GEM modeling is also proven to be a power-
ful tool to predict the phenotypic properties under genetic 
and environmental perturbations. In particular, the value 
of constraint-based GEM modeling was well appreciated 
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in the field of systems metabolic engineering where the 
identification of targets for genetic alteration at the system-
wide context is crucial to achieve the desired metabolic 
phenotype with minimal experimental trial and error. Many 
computational tools have been developed to predict promis-
ing gene deletion targets for increased production of target 
compounds [78, 86]. The earlier algorithms for identifying 
gene knockout targets have successfully been employed for 
the enhanced production of desired products upon knock-
ing out the predicted gene targets. Depending on the algo-
rithms, different mathematical formulations with optimiza-
tion methods have been developed to handle two cellular 
objectives of cell growth and maximal production of target 
compound, which are often compromised by each other. 
In addition to the prediction of gene knockout targets, 
the algorithms have been expanded to predict the up- and 
down-regulation gene targets, allowing more exhaustive 
search of phenotypic space [28, 55, 65, 68, 72]. These com-
putational tools have been successfully employed for the 
metabolic engineering of Escherichia coli, Saccharomyces 
cerevisiae, Corynebacterium glutamicum, and many oth-
ers for the production of a range of natural and non-natural 
compounds including ethanol [22, 49], butanol [48, 71], 
succinic acid [46], lactic acid [26], lycopene [15], amino 
acids [64], vanillin [8], and 1,4-butanediol [94].

Entering into the post-omics era, GEM has evolved to 
harness the wealth of sequence and omics data [3, 21, 34, 
54]. Omics data produced by high-throughput technolo-
gies provide an accurate snapshot of cellular status under a 
given metabolic environment; however, they are inherently 
enormous in scale, incomplete, noisy and complex to inter-
pret. Integration of omics data into the stoichiometric rep-
resentation of GEM not only allows the analysis of cellular 
metabolism in a context-specific manner but provides a val-
uable framework for the collection of the ever-expanding 
omics data (Fig. 2). For their efficient integration, computa-
tional tools have been developed to map genome-wide gene 
expression and proteomics data onto GEM (Table 1); these 
tools attempt to improve the prediction accuracy of meta-
bolic phenotypes by utilizing omics data as additional con-
straints. The E. coli GEM was expanded to account for all 
the biochemical reactions involved in the synthesis of tran-
scriptional and translational machinery and protein com-
plex formation so that the model could predict cell growth, 
nutrient uptake, product secretion, metabolic fluxes and 
gene expression levels. [50, 51]. Recently, an E. coli GEM 
was also integrated with a search algorithm for heterolo-
gous metabolic pathway (GEM-Path) to generate synthetic 
pathways for a given substrate and product [56]. Indeed, 
more and more innovative improvement and applications 
of GEM are being reported. In this paper, we review the 
recent progress in GEM reconstruction and computational 
tools with underlying principles (Fig. 1). Also, the strate-
gies for integrating omics data, underlying regulatory 
network, and pathway prediction algorithms to GEM are 
highlighted. Future prospects are discussed towards further 
improvement of GEM and simulation algorithms.

Genome‑scale metabolic network

The E. coli metabolic network is a representative and the best 
validated GEM, largely due to the availability of comprehen-
sive experimental data and its relatively simple network struc-
ture. Since its first report in 2000, E. coli GEM has continu-
ously been updated over the past decade [23, 40]. The iAF1260 
model published in 2007 accounts for 1260 open reading frame 
corresponding to 29 % of all the annotated genes (4,325 genes) 
and contains 1,039 metabolites and 1,387 metabolic reactions 
[24]. Using conditional essentiality analysis and new data, 
the model was further updated to the most recent version of 
iJO1366. The iJO1366 model accounts for 1,366 genes cor-
responding 32 % of all the annotated genes, 1,136 unique 
metabolites, and 1,473 metabolic reactions [62]. These recent 
models were reconstructed considering element and charge 
balanced reactions, thermodynamic consistency and gene-reac-
tion-protein associations. All these features have been found to 
be critical to improve the accuracy of the prediction of cellular 

Table 1  Computational tools for genome-scale reconstruction, strain 
design, omics data integration, and pathway prediction

Application Tools

GEM reconstruction Model SEED [32], Pathway Tools [42], 
SuBliMinaL [85], MBA [39], GLAMM 
[4], RAVEN [1], Path2Models [9]

Strain design

  Knockout MOMA [78], ROOM [81], OptKnock 
[10], RobustKnock [86], OptSwap [95], 
OptGene [66], GDLS [53], EMILiO 
[93], OptFlux [73]

  Amplification FSEOF [15], FVSEOF with GR [65]

  Knockout, knockdown, 
amplification

OptStrain [67], OptReg [68], OptForce 
[72], k-OptForce [16], OptORF [44], 
CosMos [20]

Omics data integration

  Transcriptome GIMME [5], iMAT [82], GIM3E [76], 
E-Flux [18], PROM [13], MADE [38], 
tFBA [90], RELATCH [45], TEAM 
[19], AdaM [89], GX-FBA [60], 
mCADRE [92], FCGs [43], EXAMO 
[75], TIGER [37]

  Proteome GIMMEp [6]

Pathway prediction BNICE [29], Cho et al. [14], RetroPath 
[11], PathPred [59], DESHARKY [74], 
BioPath [94], XTMS [12], GEM-Path 
[56]
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phenotype and gene essentiality [24]. Even further, taking 
advantage of a large set of genome sequences available for var-
ious E. coli strains, the GEMs for 55 E. coli strains were used 
to investigate the variations in gene, reaction and metabolite 
contents, and the capabilities to adapt to different nutritional 
environments among the strains [40].

Among eukaryotic microbes, S. cerevisiae is the best-char-
acterized model microbial organism. Since the first report of a 

compartmentalized GEM for S. cerevisiae (iFF708) in 2003, 
the number of metabolites and reactions were substantially 
increased from 584 to 1,353 and 1,145 to 1,566, respectively, 
in the recent S. cerevisiae GEM iTO977 published in 2013 
[27, 30, 63]. The complex nature of the metabolic network of 
S. cerevisiae due to the large genomic contents and cellular 
compartments initiated an effort to consolidate a large pool 
of common knowledge from various fields into a consensus 

Fig. 1  Applications of genome-
scale metabolic network model. 
Using various algorithms, the 
genome-scale metabolic model 
can be employed for predict-
ing gene manipulation targets, 
integrating omics data, and for 
predicting metabolic pathways 
for the production of a target 
compound

Fig. 2  The consequence of 
omics data integration into 
genome-scale network model. 
Omic data integration provides 
a context-specific genome-scale 
metabolic network model (S) 
under a given genetic and envi-
ronmental condition. The ranges 
(ai and bi) of the fluxes (vi) 
given as constraints are modi-
fied to reflect the transcriptome 
and proteomic data (ai

* and bi
*) 

reducing the space of possible 
flux distribution
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model. A community-based approach emerged to efficiently 
reconcile the discrepancies among the models by standard-
izing nomenclature for metabolites, curation protocol, and 
the format of model representation. Through the extensive 
manual curations and continuous updates with newly gener-
ated experimental data, the consensus GEM reached the ver-
sion 7.0 in 2013 [33]. Compared with the previous consensus 
model, the Yeast 7.0 contained the updates on the fatty acid, 
glycerophospholipid, glycerolipid metabolism and signifi-
cantly increased number of metabolites (2,218) and reactions 
(3,493). However, it should be noted that the increase in the 
number of metabolites and reactions reflects our expanded 
knowledge on the details of a part of the metabolic network 
and does not necessarily leads to the improved prediction 
capability. More parallel effort needs to be exerted on devel-
oping simulation algorithms suitable for the expanded model 
and compartmentalization, together with physiologically rel-
evant constraints. Nonetheless, realizing the benefits of such 
community-driven approach for a consensus model, con-
certed efforts for the construction of the consensus models for 
E. coli [62], Salmonella typhimurium LT2 [88], Chinese ham-
ster ovary cell [79] and Homo sapiens [35] have been initi-
ated and produced the early versions of the consensus GEMs.

In addition to the two model microorganisms, more than 
100 GEMs covering a wide range of microorganisms, includ-
ing Bacillus subtilis [31], Clostridium acetobutylicum [48], 
Clostridium beijerinckii [57], Corynebacterium glutamicum 
[80], Lactococcus lactis [25], Mannheimia succiniciproducens 
[46], Pichia pastoris [83], Pseudomonas putida [69], Synecho-
coccus sp. [91], and others, have been reported; in 2013 alone, 
GEMs for more than 10 microorganisms were newly recon-
structed [52, 58]. To facilitate the data-driven reconstruction of 
GEM, several data mining and curation tools have also been 
developed (Table 1). These tools can automatically generate 
draft GEMs from genome sequences and the bioinformatic data 
available in the public databases base such as KEGG and Meta-
Cyc. Although the automatically reconstructed GEMs need to 
go through the extensive validation and manual curation pro-
cesses, these tools would accelerate the reconstruction of new 
GEMs and be essential to improve the quality and completeness 
of the GEMs to the levels of the E. coli and S. cerevisiae GEMs.

Prediction of gene deletion and amplification targets

An important application of GEM is the prediction of the 
effects of genetic perturbations on cellular metabolic phe-
notypes. Several different algorithms based on constraint-
based FBA on GEM have been developed for the predic-
tion of gene deletion targets for the maximal production of 
target product (Table 1). In constraint-based FBA, the gene 
knockout simulation is performed by setting the correspond-
ing flux carried by the gene product (enzyme) to zero. Then, 

the prediction algorithms enable its effects on the produc-
tion of the target compound and biomass formation to be 
systematically determined at genome-scale. The objective 
of maximizing the product formation rate can be different 
from maximizing the cell growth rate, which is probably 
the objective of the host organism [77]. The prediction tools 
differ from one another in how to apply objective functions 
and impose the proper constraints in gene knockout simula-
tions, resulting in different formulation of the optimization 
problem and the outcome of the predictions.

The minimization of metabolic adjustment (MOMA) 
is one of the early algorithms developed for gene knock-
out simulation. MOMA is based on the hypothesis that the 
metabolic state of mutant is best represented by the minimal 
flux redistribution upon genetic perturbations with respect 
to the flux distribution of the wild-type strain [78]. The flux 
distribution of a mutant is determined by seeking the closest 
point in the flux space of the mutant to the optimal state of 
the wild-type strain and, in most of the cases, the predicted 
flux distribution in the mutant is sub-optimal for cell growth. 
MOMA was applied to identify gene deletion targets for the 
production of the cytosolic human superoxide dismutase 
(hSOD) in Pichia pastoris [61]. The alcohol dehydrogenase 
adh2 was identified as a deletion target and the production 
of hSOD was increased by 20 % in the adh2 knockout strain 
without compromising the cell growth. MOMA has also 
been successfully used to predict gene knockout targets for 
the enhanced production of lycopene [2], l-valine [64] and 
polylactic acid in E. coli [41]. In the study on developing 
an E. coli strain overproducing l-valine, the triple knockout 
of the aceF, pfkA, and mdh genes predicted by a sequential 
knockout simulation increased the l-valine production yield 
close to 39 g l-valine per 100 g glucose fed [64].

OptKnock is another popular gene knockout simulation 
algorithm that identifies a set of deletion targets that maxi-
mizes both the production of compounds of interest and 
cell growth using a bilevel optimization algorithm [10]. 
OptKnock was used to develop strategies for the metabolic 
engineering of E. coli for the production of 1,4-butanediol 
(BDO) and lactate [26, 94]. RobustKnock, a derivative 
of OptKnock, was developed to overcome the alternative 
optima problem of OptKnock caused by the presence of 
competing pathways [86]. RobustKnock searches gene dele-
tion targets by maximizing the guaranteed minimal produc-
tion of target chemical, whereas OptKnock simply searches 
for a set of gene deletion targets leading to the maximal pro-
duction at a given biomass yield. For more specific target 
identification, OptSwap uses RobustKnock algorithm with 
an additional function of optimization of the cofactor spe-
cificities of oxidoreductases. Using E. coli GEM iJO1366, 
OptSwap proposed the strategies for the modification of 
cofactor specificities of oxidoreductases and gene knockout 
targets for the production of l-alanine, succinate, acetate, 
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and d-lactate [95]. Cofactor modification analysis (CMA) 
is another constraint-based flux balance analysis tool that 
finds targets for the switch of cofactor specificity to achieve 
improved production rate of a desired product and high cel-
lular growth rate simultaneously. It identifies targets by mon-
itoring changes in flux distribution patterns in response to 
altered cofactor specificity in metabolic network model [47].

Together with gene deletion, increasing metabolic fluxes 
by the overexpression of the relevant genes has been one of 
the most frequently employed engineering strategies for the 
enhanced production of desired compounds. Several strate-
gies such as flux response analysis [84], flux scanning based 
on enforced objective flux (FSEOF) [15] and flux variability 
scanning based on enforced objective flux (FVSEOF) with 
grouping reaction (GR) constraints [65] have been developed 
to predict gene amplification targets (Table 1). Flux response 
analysis allows systematic examination of the effects of alter-
ing particular fluxes on the distribution of other metabolic 
fluxes, allowing identification of those fluxes that increase 
the production rate of the target product [84]. For example, 
the phosphoenolpyruvate carboxylase (ppc) was identified as 
an amplification target for fumaric acid overproduction using 
flux response analysis; the overexpression of the ppc gene 
increased the fumaric acid titer by 2.8-fold. Similarly, FSEOF 
allows identification of the intracellular fluxes that increased 
together with the enforced objective flux (e.g., product forma-
tion rate) as the gene amplification targets [15]. In a study on 
the metabolic engineering of E. coli for the production of lyco-
pene, the overexpression of the idi and mdh genes predicted 
by FSEOF increased the lycopene production by 2.7-fold 
compared to the control strain [15]. In order to overcome the 
limitations of FSEOF such as alternative optima and the lack 
of thorough consideration of the physiological state, FVSEOF 
with GR constraints was developed. The GR constraints are 
derived from omics data and incorporated as additional con-
straints to reflect the physiological status of cells [65], which 
allowed more accurate simulation results. This algorithm was 
successfully employed for the identification of glk, acnA, 
acnB, ackA, and ppc genes as amplification targets; individual 
amplification of one of these genes resulted in the enhanced 
production of putrescine in E. coli up to 20.5 % [65].

Prediction of target genes to be up‑ or down‑regulated

Beyond the identification of gene deletion and amplifica-
tion targets, there have been several approaches which can 
identify up- or down-regulation gene targets (Table 1). A 
gene knock-out prediction tool OptKnock was extended 
to OptReg [68] and OptForce [72] to identify gene tar-
gets for deletion and up-/down-regulations by comparative 
analysis of the possible metabolic flux range in wild-type 
and engineered strains. In OptForce, the flux ranges are 

calculated using flux variability analysis in which each flux 
is iteratively maximized and minimized. If the flux range 
of a certain pathway in the wild-type strain substantially 
deviates from that of production strain, the corresponding 
gene is predicted to be up- or down-regulation targets and 
the gap between the two flux ranges indicates the degree of 
required modification. OptForce was demonstrated to reca-
pitulate the previously reported engineering strategies for 
succinic acid production, and also suggested the additional 
genetic manipulation strategies to be tested.

CosMos uses a similar approach, but it differs from Opt-
Force in that it allows continuous changes in flux ranges 
instead of fixing them to the values determined by flux 
variability analysis [20]. When compared with OptForce 
for succinate production in E. coli, CosMos suggested new 
strategies which required fewer modifications and gave 
higher succinate yield. Recently, k-OptForce was devel-
oped by incorporating known kinetic information of meta-
bolic reactions into the OptForce platform [16]. In a bench-
mark study on the overproduction of l-serine in E. coli, 
k-OptForce identified key regulatory bottlenecks that Opt-
Force failed to predict and eliminated unnecessary genetic 
interventions predicted by OptForce [16]. k-OptForce also 
suggested genetic interventions leading to increased pro-
duction of the target compound by alleviating the substrate-
level inhibition of key enzymes, which was emphasized 
as an example demonstrating the benefit of integrating 
enzyme kinetic information into the stoichiometric model. 
In addition to the algorithms introduced above, several 
other algorithms have been developed (Table 1). The effec-
tiveness of applying these algorithms in actual strain devel-
opment studies needs to be seen in the future.

Omics integrated genome‑scale models

Omics data can provide most relevant snapshots of the 
biological and metabolic status of microorganisms under 
certain genotypic and environmental conditions, and can 
be used as constraints to narrow down the solution space 
of flux distribution (Fig. 2). GEM is a powerful platform 
to which various biological information can be integrated 
thanks to the simplicity in its formulation, no requirement 
for kinetic parameters, and well-established analytical 
methods. However, the noise, incompleteness and complex-
ity of omics data pose significant challenges in their inte-
gration into GEM. For the efficient mapping of large omics 
data set into GEM, various tools have been developed 
(Table 1). Gene Inactivity Moderated by Metabolism and 
Expression (GIMME) generates a context-dependent GEM 
by the integration of transcriptome data [5]. In GIMME, a 
set of reactions corresponding to the mRNA transcript lev-
els below the specified thresholds is temporarily set to zero 
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and the model is tested for a given objective function. If 
the model fails to achieve the cellular objective (cell growth 
or ATP production and etc.), a set of deleted reaction(s) is 
restored to meet the constraints using linear programming. 
Later on, GIMME was expanded to incorporate proteomic 
(GIMMEp) and metabolomic data (GIM3E) [6, 76]. Unlike 
GIMME, integrative Metabolic Analysis Tool (iMAT) does 
not require an objective function [82]. Instead, gene expres-
sion data is first discretized (−1, 0 and 1) and mapped into 
GEM to divide the reactions into two groups: high and low 
expression subsets. Then, iMAT solves a mixed integer lin-
ear problem under the stoichiometric and thermodynamic 
constraints to find a steady-state flux distribution that maxi-
mizes the number of reactions the activities of which are 
consistent with the corresponding expression state. Its key 
advantage over GIMME is no requirement of a user-speci-
fied objective function that GEM is assumed to meet.

Whereas GIMME and iMAT integrate gene expression 
data by translating gene expression level to discrete values, 
E-Flux incorporates gene expression data by using them 
to set a continuous range of flux values [7, 18]. E-Flux 
constrains the upper and lower bounds of fluxes accord-
ing to the expression levels of the corresponding genes. 
Probabilistic Regulation of Metabolism (PROM) integrates 
metabolic and gene expression data utilizing a large set of 
microarray data and pre-determined transcriptional regu-
latory network structure [13]. PROM takes a probabilistic 
approach to describe the status of metabolic reactions by 
analyzing the gene states and gene-transcription factor (TF) 
interactions. The integrated PROM model for E. coli was 
built upon 136 TFs regulating the expression of 708 meta-
bolic genes through 1,773 interactions. By systematically 
analyzing the gene expression levels in relation to the state 
of TFs, the probabilities of the genes to be on are deter-
mined. The calculated probabilities are then, similarly to 
E-Flux, used to constrain the flux ranges through the reac-
tions controlled by the target genes. Because the transcrip-
tional regulatory network structure is incorporated into 
PROM, it can also be used to identify transcriptional regu-
latory factors to be engineered for the production of target 
compounds and desired complex phenotype.

In a recent study, a pool of the integrated models 
including GIMME, iMAT, MADE and E-Flux were 
evaluated with respect to their capabilities to predict the 
flux distributions in E. coli growing aerobically in batch 
and chemostat and S. cerevisiae growing in glucose-lim-
ited chemostat [54]. Interestingly, no integrated model 
consistently performed well under all three cases, and 
often, the predictions by simple constraint-based FBA 
were as good as or better than those produced from the 
integrated models. These results do not undermine the 
efforts for integrated GEM, but at the same time, they 
highlight the gaps in our knowledge on the correlation 

of gene expression and underlying determinants of met-
abolic fluxes. Once these gaps are filled by the rapidly 
advancing omics technologies and algorithms for GEM 
applications, the accuracy of GEM will be substantially 
improved leading to more reliable target prediction for 
genetic manipulations including gene deletion, up- and 
down-regulation.

Prediction of novel biosynthetic pathways

The efforts to expand the repertoire of bio-based chemi-
cals have produced computational algorithms capable of 
predicting synthetic routes to the production of natural and 
non-natural compounds (Table 1). The two key elements 
in pathway prediction are the reactions rules describing 
the patterns of the chemical transformation and heuristics 
ranking the predicted pathways. Biochemical network inte-
grated computational explorer (BNICE) uses the third-level 
Enzyme Commission (EC) system to classify the reactions 
according to the similarity of the biochemical transforma-
tion pattern [29]. BNICE could account for ~50 % of the 
reactions in KEGG database with the 86 reaction rules. 
BNICE also takes into account reaction thermodynamics 
and the entries in BNICE are not limited to the chemicals 
from a specific database such as KEGG LIGAND facili-
tating the prediction of novel synthetic pathways. Various 
prediction algorithms, including the pathway prediction 
system developed by Cho et al. [14], RetroPath [11], Path-
Pred [59], DESHARKY [74] and Biopathway Predictor 
(BioPath), have been developed using their own reaction 
rules and the heuristics for ranking and pathway search 
algorithms (Table 1) [94].

Metabolic Tinker first compiles compounds and reac-
tions from CHEBI and Rhea database to generate the uni-
versal reaction network in the form of hyper-graph [54]. 
Then, Metabolic Tinker searches for synthetic metabolic 
pathways between two given compounds based on chemi-
cal similarity and thermodynamic feasibility using graph 
search heuristics. The latest web-based pathway analysis 
platform, XTMS presents a unique strategy of molecular 
signature and extended metabolic space [12]. A molecular 
signature containing information about the connectivity of 
each atom through chemical bonds up to a predetermined 
diameter d is used to enumerate all the chemical entries 
and derive reaction rules. Then, XTMS extends the meta-
bolic network of an organism such as E. coli to generate 
extended metabolic space for a given d. As d decreases, 
the promiscuity of reactions increases resulting in a lager 
extended metabolic space. When d = 12 was given, XTMS 
extended a metabolic network consisting of 6,093 metabo-
lites connected through 6,078 reactions (MetaCyc data-
base) to an extended metabolic space containing 27,743 
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reactions. In an example, XTMS proposed natural and het-
erologous routes in E. coli for the production of raspberry 
ketone.

GEM-Path is a prediction algorithm that is most tightly 
integrated into GEM among the various algorithms reported 
[56]. While many algorithms suffer from the explosion of 
synthetic pathways and depend on the ranking heuristics for 
filtering infeasible pathways, GEM-Path performs pathway 
integration with a given GEM at each step of retrosynthetic 
pathway assembly. For example, the predicted intermedi-
ates are modeled, using constraint-based GEM analysis, to 
determine the compatibility with the metabolic context of 
a given host organism in terms of condition-specific cofac-
tor utilization and regeneration, substrate utilization, oxy-
gen requirement, energy balance, thermodynamic feasibil-
ity, and others. The pathways leading to the intermediates 
that could not be coupled with cell growth are filtered out. 
This approach was devised to efficiently reduce the search 
space and ensure growth-coupled production of target com-
pounds. With respect to the reaction promiscuity, GEM-Path 
analyzes the similarity of native and non-native substrates 
based on the molecular fingerprints representing the charac-
teristics of a particular bond pattern within a molecule and 
determines a promiscuity score for the pairs of substrates. 
If the score is below a certain value, the same reaction is 
assigned to both substrates. GEM-Path was tested for the 
growth-coupled production of 20 different chemicals under 
various growth conditions on different carbon sources.

Concluding remarks

With the availability of the complete genome sequences 
for increasing number of organisms, the reconstruction 
and applications of GEM has become an essential practice 
in metabolic engineering. Various algorithms have been 
developed to predict metabolic states and characteristics 
of strains under genetic and environmental perturbations, 
and consequently to suggest metabolic engineering strate-
gies for the enhanced production of target compounds. The 
reconstruction of GEM, which was extensively dependent 
on the manual curation of available gene annotation data 
for an organism, now can be done in much easily using 
various computational tools. Many different algorithms for 
the simulation of GEMs have been developed for the iden-
tification of gene knockout, gene amplification and gene 
up- or down-regulation targets. Much advance has been 
made on integrating multiple omics data with GEM with an 
objective of more accurate simulation of metabolic states 
through the consideration of regulatory information in flux 
analysis. The integration of the rapidly expanding omics 
data with GEM will expand our understanding of the oper-
ation and regulation of metabolic networks and improve 

the prediction capability as well. It is expected that the 
GEM and its simulation using various algorithms will play 
increasingly important roles in developing strains capable 
of efficiently producing chemicals, fuels and materials.
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